The Robert M. Buchan Department of Mining
Graduate Teaching Assistantships
Spring/Summer 2021 Term

All graduate students are invited to apply for a Graduate Teaching Assistantship for the Spring/Summer 2021 term. Following the Collective Agreement, students who are studying in The Robert M. Buchan Department of Mining will be given preference over students from outside the department. It is recommended that you read the PSAC Local 901, Collective Agreement for Graduate Teaching Assistants found at:

http://www.queensu.ca/facultyrelations/teaching-assistants-and-fellows/collective-agreement

Please see the attached list of courses being taught this term that require a TA support. For more information on each course, please see the Undergraduate Calendar at
http://calendar.engineering.queensu.ca/

These positions are conditional upon enrollment figures and budgetary approval. Positions will remain posted until they have been filled (no less than 7 business days) from date of posting and remuneration will be in accordance with the Collective Agreement.

TA assignments could include duties such as leading laboratories, tutoring, hosting virtual office hours, marking of assignments, reports, quizzes, exams. Due to changes in enrollments, some positions may have their hours adjusted once the semester begins. Any necessary training will be included in the assignment. TA positions will be fully remote for the spring/summer 2021.

It is your responsibility to ensure you make yourself available to complete the TA work. If you are planning on being away from internet access for a significant amount of time during the semester, please indicate this when submitting your application and keep your employment supervisor up to date. Note that for Spring/Summer 2021, Final exams are scheduled until August 15th, 2021 so it is possible that marking may be required right to the end of the month.

As TAships do not form part of the funding package for graduate students in The Robert M. Buchan Department of Mining, TAships will only be offered as per the criteria outlined in Second Preference – Group B or to candidates in Group C or D. In addition, we will do our best to match your preference to course offerings.

Second Preference – Group B: for qualified graduate students registered as:

(i) students in a department or program in which the TAship will be offered; or
(ii) students in an interdisciplinary program with TA budget resources, and for whom
(iii) the TAship will not form part of the funding commitment offered by Queen’s University; or
(iv) there is currently no funding commitment provided by Queen’s University.

Third Preference – Group C: for qualified graduate students that have previously held a TAship or TFship for the Employer.
Fourth Preference – Group D: for qualified graduate students that have not yet met the criteria as set out in A, B, or C.

Application Process:

Review the list of available TA positions for the Spring/Summer 2021 Term for current opportunities. Make note of your top 3 preferences.

Please complete the [application](mailto:brittany.cox@queensu.ca) form AND submit a Curriculum Vitae and a copy of your recent transcripts (not official) via email to brittany.cox@queensu.ca.

Applications will be reviewed at the end of the application period.

All Applications are due by Friday March 19th, 2021.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Term</th>
<th>Instructor</th>
<th>Estimated Enrollment</th>
<th># of TA ships and hours</th>
<th>Required Background/Skills</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNTC313</td>
<td>Introduction Programming</td>
<td>S</td>
<td>Asli Sari</td>
<td>855-860</td>
<td>29 TA's at 85hrs</td>
<td>Advanced knowledge in computer programming and experience with C/C++ and Matlab.</td>
<td>Students will be introduced to the fundamental concepts of computer programming using both C/C++ and MATLAB. The course will teach computer programming with a focus on practical applications for analysing data and solving practical mathematical problems. Topics will include basic components of a computer (both hardware and software), memory and variables, expressions, selection structures, loops, arrays, functions, and commonly used algorithms such as sorting and searching. At the end of the course, students will be able to apply computer programming skills to assist in both design and analysis for real-life engineering applications. (0/0/0/36/0)</td>
</tr>
</tbody>
</table>